A New Fully Polynomial Approximation Scheme for the Knapsack Problem
نویسندگان
چکیده
A new fully polynomial approximation scheme (FPTAS) is presented for the classical 0{1 knapsack problem. It considerably improves the space requirements. The two best previously known approaches need O(n+1=" 3) and O(n1=") space, respectively. Our new approximation scheme requires only O(n + 1=" 2) space while also reducing the running time.
منابع مشابه
Improved Fully Polynomial time Approximation Scheme for the 0-1 Multiple-choice Knapsack Problem
In this paper the 0-1 Multiple-Choice Knapsack Problem (0-1 MCKP), a generalization of the classical 0-1 Knapsack problem, is addressed. We present a fast Fully Polynomial Time Approximation Scheme (FPTAS) for the 0-1 MCKP, which yields a better time bound than known algorithms. In particular it produces a (1+ ) approximate solution and runs in O(nm/ ) time, where n is the number of items and m...
متن کاملFully Polynomial Time Approximation Schemes
Recall that the approximation ratio for an approximation algorithm is a measure to evaluate the approximation performance of the algorithm. The closer the ratio to 1 the better the approximation performance of the algorithm. It is notable that there is a class of NP-hard optimization problems, most originating from scheduling problems, for which there are polynomial time approximation algorithm...
متن کاملApproximation Complexity of min-max (Regret) Versions of Shortest Path, Spanning Tree, and Knapsack
This paper investigates, for the first time in the literature, the approximation of min-max (regret) versions of classical problems like shortest path, minimum spanning tree, and knapsack. For a bounded number of scenarios, we establish fully polynomial-time approximation schemes for the min-max versions of these problems, using relationships between multi-objective and min-max optimization. Us...
متن کاملA nonlinear Knapsack problem
The nonlinear Knapsack problem is to maximize a separable concave objective function, subject to a single "packing" constraint, in nonnegative variables. We consider this problem in integer and continuous variables, and also when the packing constraint is convex. Although the nonlinear Knapsack problem appears difficult in comparison with the linear Knapsack problem, we prove that its complexit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1998